The Alternative Role of Enterobactin as an Oxidative Stress Protector Allows Escherichia coli Colony Development

نویسندگان

  • Conrado Adler
  • Natalia S. Corbalan
  • Daiana R. Peralta
  • María Fernanda Pomares
  • Ricardo E. de Cristóbal
  • Paula A. Vincent
چکیده

Numerous bacteria have evolved different iron uptake systems with the ability to make use of their own and heterologous siderophores. However, there is growing evidence attributing alternative roles for siderophores that might explain the potential adaptive advantages of microorganisms having multiple siderophore systems. In this work, we show the requirement of the siderophore enterobactin for Escherichia coli colony development in minimal media. We observed that a strain impaired in enterobactin production (entE mutant) was unable to form colonies on M9 agar medium meanwhile its growth was normal on LB agar medium. Given that, neither iron nor citrate supplementation restored colony growth, the role of enterobactin as an iron uptake-facilitator would not explain its requirement for colony development. The absence of colony development was reverted either by addition of enterobactin, the reducing agent ascorbic acid or by incubating in anaerobic culture conditions with no additives. Then, we associated the enterobactin requirement for colony development with its ability to reduce oxidative stress, which we found to be higher in media where the colony development was impaired (M9) compared with media where the strain was able to form colonies (LB). Since oxyR and soxS mutants (two major stress response regulators) formed colonies in M9 agar medium, we hypothesize that enterobactin could be an important piece in the oxidative stress response repertoire, particularly required in the context of colony formation. In addition, we show that enterobactin has to be hydrolyzed after reaching the cell cytoplasm in order to enable colony development. By favoring iron release, hydrolysis of the enterobactin-iron complex, not only would assure covering iron needs, but would also provide the cell with a molecule with exposed hydroxyl groups (hydrolyzed enterobactin). This molecule would be able to scavenge radicals and therefore reduce oxidative stress.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Efficient Process Development of Recombinant Human Granulocyte Colony-Stimulating Factor (rh-GCSF) Production in Escherichia coli

Background: The protein hormone granulocyte colony-stimulating factor (GCSF) stimulates the production of white blood cells and plays an important role in medical treatment of cancer patients. Methods: An efficient process was developed for heterologous expression of human GCSF in E. coli BL21 (DE3). The feeding rate was adjusted to achieve the maximum attainable specific growth rate under crit...

متن کامل

Enterobactin as Part of the Oxidative Stress Response Repertoire

Microorganisms produce siderophores to facilitate iron uptake and even though this trait has been extensively studied, there is growing evidence suggesting that siderophores may have other physiological roles aside from iron acquisition. In support of this notion, we previously linked the archetypal siderophore enterobactin with oxidative stress alleviation. To further characterize this associa...

متن کامل

The small RNA RyhB contributes to siderophore production and virulence of uropathogenic Escherichia coli.

In Escherichia coli, the small regulatory noncoding RNA (sRNA) RyhB and the global ferric uptake regulator (Fur) mediate iron acquisition and storage control. Iron is both essential and potentially toxic for most living organisms, making the precise maintenance of iron homeostasis necessary for survival. While the roles of these regulators in iron homeostasis have been well studied in a nonpath...

متن کامل

Catecholate Siderophores Protect Bacteria from Pyochelin Toxicity

BACKGROUND Bacteria produce small molecule iron chelators, known as siderophores, to facilitate the acquisition of iron from the environment. The synthesis of more than one siderophore and the production of multiple siderophore uptake systems by a single bacterial species are common place. The selective advantages conferred by the multiplicity of siderophore synthesis remains poorly understood....

متن کامل

Membrane association of the Escherichia coli enterobactin synthase proteins EntB/G, EntE, and EntF.

The cytosolic proteins EntE, EntF, and EntB/G, which are Escherichia coli enzymes necessary for the final stage of enterobactin synthesis, are released by osmotic shock. Here, consistent with the idea that cytoplasmic proteins found in shockates have an affinity for membranes, a small fraction of each was found in membrane preparations. Two procedures demonstrated that the enzymes were enriched...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2014